Leveraging AI to enhance quality for Higher Education Institutions (HEIS)

Autores

  • Phineas Sebopelo Botswana Open University

DOI:

https://doi.org/10.37497/rev.artif.intell.educ.v5i00.32

Palavras-chave:

Resource-Constrained Environments, Artificial Intelligence (AI), Higher Education, Technologies, Chatbot, Distance Education Learning

Resumo

Purpose: This study critically reviews the literature on adopting and using artificial intelligence platforms to enhance quality in Higher Education Institutions (HEIs).

Methodology/Design/Approach: The present study follows a critical literature review on technological innovations, particularly Artificial Intelligence (AI) systems for enhancing quality Open and Distance Education Learning (ODeL). A critical review of the literature was conducted on works that explored the current AI applications that institutions are using to improve the quality of their teaching and learning. This was done through bibliometric analysis, which included a search of popular databases for previously published works. Bibliometric, citation network and keyword analysis were utilized to evaluate the literature review.

Findings: The review highlights the potential of AI systems that Higher Education Institutions can utilize to enhance the quality of education. The Artificial Intelligence platforms for enhancing quality in ODeL institutions include the use of Intelligent tutors, Automated grading, and feedback systems, ChatGPT, Chatbots, and Virtual campuses. The adoption and use of technological innovation are closely linked to students' acceptance, affordability, and usability of the learning technologies. 

Implications: This study's results provide implications for researchers, Innovation Hubs, and systems developers and users, including teachers and other education stakeholders.

Referências

Al Husaeni, D. F., & Nandiyanto, A. B. D. (2022). Bibliometric using Vosviewer with Publish or Perish (using Google Scholar data): From step-by-step processing for users to the practical examples in the analysis of digital learning articles in pre and post-Covid-19 pandemic. ASEAN Journal of Science and Engineering, 2(1), 19-46. http://dx.doi.org/10.17509/ajse.v2i1.37368 DOI: https://doi.org/10.17509/ajse.v2i1.37368

Aljarrah, A., Ababneh, M., Karagozlu, D., & Ozdamli, F. (2021). Artificial Intelligence Techniques for Distance Education: A Systematic Literature Review. TEM Journal, 10(4). http://dx.doi.org/10.18421/TEM104-18 DOI: https://doi.org/10.18421/TEM104-18

Basenach, L., Renneberg, B., Salbach, H., Dreier, M., & Wölfling, K. (2023). Systematic reviews and meta-analyses of treatment interventions for Internet use disorders: Critical analysis of the methodical quality according to the PRISMA guidelines. Journal of Behavioral Addictions, 12(1), 9-25. https://doi.org/10.1556%2F2006.2022.00087 DOI: https://doi.org/10.1556/2006.2022.00087

Bond, M., Khosravi, H., De Laat, M., Bergdahl, N., Negrea, V., Oxley, E., ... & Siemens, G. (2024). A meta systematic review of artificial intelligence in higher education: a call for increased ethics, collaboration, and rigor. International Journal of Educational Technology in Higher Education, 21(1), 4. https://doi.org/10.1186/s41239-023-00436-z DOI: https://doi.org/10.1186/s41239-023-00436-z

Bornmann, L., Haunschild, R., & Mutz, R. (2021). Growth rates of modern science: a latent piecewise growth curve approach to model publication numbers from established and new literature databases. Humanities and Social Sciences Communications, 8(1), 1-15. Retrieved from https://www.nature.com/articles/s41599-021-00903-w DOI: https://doi.org/10.1057/s41599-021-00903-w

Boyer, S., Ikeda, T., Lefort, M. C., Malumbres-Olarte, J., & Schmidt, J. M. (2017). Percentage-based Author Contribution Index: a universal measure of author contribution to scientific articles. Research Integrity and Peer Review, 2(1), 1-8. DOI 10.1186/s41073-017-0042-y DOI: https://doi.org/10.1186/s41073-017-0042-y

Bukar, U. A., Sayeed, M. S., Razak, S. F. A., Yogarayan, S., Amodu, O. A., & Mahmood, R. A. R. (2023). A method for analyzing text using VOSviewer. MethodsX, 11, 102339. https://doi.org/10.1016/j.mex.2023.102339 DOI: https://doi.org/10.1016/j.mex.2023.102339

Corrêa Jr, E. A., Silva, F. N., Costa, L. D. F., & Amancio, D. R. (2017). Patterns of authors' contribution in scientific manuscripts. Journal of Informetrics, 11(2), 498-510. DOI: 10.1016/j.joi.2017.03.003 DOI: https://doi.org/10.1016/j.joi.2017.03.003

Dogan, M. E., Goru Dogan, T., & Bozkurt, A. (2023). The use of artificial intelligence (AI) in online learning and distance education processes: A systematic review of empirical studies. Applied Sciences, 13(5), 3056. https://doi.org/10.3390/app13053056 DOI: https://doi.org/10.3390/app13053056

Göçmez, L., & Okur, M. R. (2023). Artificial Intelligence Applications in Open and Distance Education: A Systematic Review of the Articles (2007-2021). Asian Journal of Distance Education, 18(1). Retrieved from https://www.asianjde.com/ojs/index.php/AsianJDE/article/view/665

González-Calatayud, V., Prendes-Espinosa, P., & Roig-Vila, R. (2021). Artificial intelligence for student assessment: A systematic review. Applied Sciences, 11(12), 5467. https://doi.org/10.3390/app11125467 DOI: https://doi.org/10.3390/app11125467

Haddaway, N. R., Hedlund, K., Jackson, L. E., Kätterer, T., Lugato, E., Thomsen, I. K., ... & Isberg, P. E. (2017). How does tillage intensity affect soil organic carbon? A systematic review. Environmental Evidence, 6, 1-48. http://dx.doi.org/10.1186/s13750-017-0108-9 DOI: https://doi.org/10.1186/s13750-017-0108-9

Halevi, G., Moed, H., & Bar-Ilan, J. (2017). Suitability of Google Scholar as a source of scientific information and as a source of data for scientific evaluation—Review of the literature. Journal of informetrics, 11(3), 823-834. DOI: 10.1016/j.joi.2017.06.005 DOI: https://doi.org/10.1016/j.joi.2017.06.005

Jamalova, G., Aymatova, F., & Ikromov, S. (2022, December). The state-of-the-art applications of artificial intelligence in distance education: a systematic mapping study. In Proceedings of the 6th International Conference on Future Networks & Distributed Systems (pp. 600-606). https://doi.org/10.1145/3584202.3584292 DOI: https://doi.org/10.1145/3584202.3584292

Jing, Y., Zhao, L., Zhu, K., Wang, H., Wang, C., & Xia, Q. (2023). Research landscape of adaptive learning in education: A bibliometric study on research publications from 2000 to 2022. Sustainability, 15(4), 3115. https://doi.org/10.3390/su15043115 DOI: https://doi.org/10.3390/su15043115

Kuleto, V., Ilić, M., Dumangiu, M., Ranković, M., Martins, O. M., Păun, D., & Mihoreanu, L. (2021). Exploring opportunities and challenges of artificial intelligence and machine learning in higher education institutions. Sustainability, 13(18), 10424. https://doi.org/10.3390/su131810424 DOI: https://doi.org/10.3390/su131810424

Liu, B. L., Morales, D., Roser-Chinchilla, J., Sabzalieva, E., Valentini, A., Vieira do Nascimento, D., & Yerovi, C. (2023). Harnessing the era of artificial intelligence in higher education: a primer for higher education stakeholders. Retrieved from https://unesdoc.unesco.org/ark:/48223/pf0000386670

Mahlangu, V. P. (2021). Quality Assurance and Accreditation in Open and Distance Learning. In Research Anthology on Preparing School Administrators to Lead Quality Education Programs (pp. 1079-1097). IGI Global. DOI: 10.4018/978-1-7998-3438-0.ch049 DOI: https://doi.org/10.4018/978-1-7998-3438-0.ch049

Phoong, S. W., Phoong, S. Y., & Khek, S. L. (2022). Systematic literature review with bibliometric analysis on Markov switching model: Methods and applications. Sage Open, 12(2), 21582440221093062. DOI: https://doi.org/10.1177/21582440221093062

Manzoor, A. (2021). Quality assurance in open and distance learning. In Research Anthology on Preparing School Administrators to Lead Quality Education Programs (pp. 22-35). IGI Global. DOI: 10.4018/978-1-7998-3438-0.ch002 DOI: https://doi.org/10.4018/978-1-7998-3438-0.ch002

Marengo, A., Pagano, A., Soomro, K., & Pange, J. (2023). The educational value of artificial intelligence in higher education: a ten-year systematic literature review. http://dx.doi.org/10.20944/preprints202311.0055.v1. DOI: https://doi.org/10.20944/preprints202311.0055.v1

Munir, H., Vogel, B., & Jacobsson, A. (2022). Artificial intelligence and machine learning approaches in digital education: A systematic revision. Information, 13(4), 203. DOI: https://doi.org/10.3390/info13040203

Mwangi, A. (2021). The advantage of adopting open distance and e-learning is increasing access to female higher education. Journal of Online and Distance Learning, 1(1), 1–13. https://doi.org/10.47941/jodl.634 DOI: https://doi.org/10.47941/jodl.634

Ozdamli, F.; Aljarrah, A.;Karagozlu, D.; Ababneh, M. Facial Recognition System to Detect Student Emotions and Cheating in distance learning. Sustainability 2022, 14,13230. https://doi.org/10.3390/su142013230 DOI: https://doi.org/10.3390/su142013230

Öztürk, O., Kocaman, R., & Kanbach, D. K. (2024). How to design bibliometric research: an overview and a framework proposal. Review of managerial science, 1-29. https://doi.org/10.1007/s11846-024-00738-0 DOI: https://doi.org/10.1007/s11846-024-00738-0

Mei, F., Li, J. J., Li, J., Dong, S., Li, Z., & Xing, D. (2023). Global Cluster Analysis and Network Visualization in Musculoskeletal Pain Management: A Scientometric Mapping. Orthopaedic Surgery, 15(1), 301-314. DOI: https://doi.org/10.1111/os.13564

Popenici, S., Catalano, H., Mestic, G., & Ani-Rus, A. (2023). A Systematic Review of the Artificial Intelligence Implications in Shaping the Future of Higher Education. Educatia 21 Journal, 26, 93-107. https://doi.org/10.24193/ed21.2023.26.11 DOI: https://doi.org/10.24193/ed21.2023.26.11

Sari, J. M., & Purwanta, E. (2021). The implementation of artificial intelligence in STEM-based creative learning in the society 5.0 Era. Tadris J. Kegur. dan Ilmu Tarb, 6(2), 433-440. http://dx.doi.org/10.24042/tadris.v6i2.10135 DOI: https://doi.org/10.24042/tadris.v6i2.10135

Tan, S. C., Lee, A. V. Y., & Lee, M. (2022). A systematic review of artificial intelligence techniques for collaborative learning over the past two decades. Computers and Education: Artificial Intelligence, 3, 100097. https://doi.org/10.1016/j.caeai.2022.100097 DOI: https://doi.org/10.1016/j.caeai.2022.100097

Uttley, L., Quintana, D. S., Montgomery, P., Carroll, C., Page, M. J., Falzon, L., ... & Moher, D. (2023). The problems with systematic reviews: a living systematic review. Journal of Clinical Epidemiology, 156, 30-41. https://doi.org/10.1016/j.jclinepi.2023.01.011 DOI: https://doi.org/10.1016/j.jclinepi.2023.01.011

Zuhairi, A., Raymundo, M. R. D. R., & Mir, K. (2020). Implementing quality assurance system for open and distance learning in three Asian open universities: Philippines, Indonesia, and Pakistan. Asian Association of Open Universities Journal, 15(3), 297-320. https://doi.org/10.1108/AAOUJ-05-2020-0034. DOI: https://doi.org/10.1108/AAOUJ-05-2020-0034

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of business research, 133, 285-296.https://doi.org/10.1016/j.jbusres.2021.04.070 DOI: https://doi.org/10.1016/j.jbusres.2021.04.070

Downloads

Publicado

2024-09-13

Como Citar

Sebopelo, P. (2024). Leveraging AI to enhance quality for Higher Education Institutions (HEIS). Review of Artificial Intelligence in Education, 5(00), e032. https://doi.org/10.37497/rev.artif.intell.educ.v5i00.32

Edição

Seção

Perspectives (ARTIFICIAL INTELLIGENCE)