Assimilação da Inteligência Artificial e Qualidade dos Serviços Universitários: O Papel Mediador da Satisfação dos Estudantes
PDF (English)

Palavras-chave

Inteligência Artificial
Qualidade do Serviço
Ensino Superior
Satisfação do Estudante
Smart PLS

Como Citar

Sebopelo, P., Baloyi, O., & Chukwuma, N. N. (2025). Assimilação da Inteligência Artificial e Qualidade dos Serviços Universitários: O Papel Mediador da Satisfação dos Estudantes. Review of Artificial Intelligence in Education, 6(i), e042. https://doi.org/10.37497/rev.artif.intell.educ.v6ii.42

Resumo

Objetivo: Investigar como a assimilação de inteligência artificial (IA) impacta a percepção dos estudantes sobre a qualidade dos serviços universitários, considerando a satisfação dos estudantes como fator mediador.

Metodologia: Aplicou-se uma abordagem quantitativa. Os dados foram coletados por meio de um questionário tipo Likert, respondido por estudantes da Botswana Open University e da National Open University of Nigeria. Utilizou-se modelagem de equações estruturais (SEM) com Smart PLS para testar as hipóteses.

Resultados: A assimilação da IA tem impacto significativo na percepção da qualidade dos serviços universitários. A satisfação dos estudantes atua como mediadora parcial nessa relação, sendo elemento chave para o sucesso da integração da IA no ensino superior.

Originalidade/Contribuição: O estudo oferece evidências empíricas sobre o papel mediador da satisfação estudantil na relação entre assimilação de IA e qualidade do serviço, especialmente em países em desenvolvimento, ampliando o conhecimento teórico e prático na área.

Implicações Práticas: Recomenda-se que as universidades invistam em ferramentas de IA que melhorem a personalização dos serviços, a eficiência administrativa e o engajamento dos estudantes, considerando também as preocupações relacionadas à autonomia e pensamento crítico.

Limitações: O estudo é limitado a duas universidades e adota um desenho transversal, sugerindo futuros estudos longitudinais e com escopo ampliado.

https://doi.org/10.37497/rev.artif.intell.educ.v6ii.42
PDF (English)

Referências

Agrawal, A., Gans, J., & Goldfarb, A. (2018). Prediction machines: the simple economics of artificial intelligence. Harvard Business Press.

Alalwany, W., & Yonan, J. (2023). Role of Artificial Intelligence (AI) in Improving Educational Quality and Networking for Students and Faculty. Babylonian Journal of Networking. https://doi.org/10.58496/bjn/2023/008.

Al-Araj, R. E. E. M., Haddad, H. O. S. S. A. M., Shehadeh, M. A. H. A., Hasan, E., & Nawaiseh, M. Y. (2022). The effect of artificial intelligence on service quality and customer satisfaction in Jordanian banking sector. WSEAS Transactions on Business and Economics, 19(12), 1929-1947. DOI: 10.37394/23207.2022.19.173.

Alemu, A. (2023). Assessing service quality in tertiary Education using adapted SERVQUAL scale. Cogent Education, 10(2), 2259733. https://doi.org/10.1080/2331186X.2023.2259733.

Almufarreh, A. (2024). Determinants of Students’ Satisfaction with AI Tools in Education: A PLS-SEM-ANN Approach. Sustainability, 16(13), 5354. http://dx.doi.org/10.3390/su16135354.

Almulla, M. A. (2023). Constructivism learning theory: A paradigm for students’ critical thinking, creativity, and problem solving to affect academic performance in higher education. Cogent Education, 10(1), 2172929. https://doi.org/10.1080/2331186X.2023.2172929.

Alshahrani, A., Dennehy, D., & Mäntymäki, M. (2022). An attention-based view of AI assimilation in public sector organizations: The case of Saudi Arabia. Government Information Quarterly, 39(4), 101617. http://dx.doi.org/10.1016/j.giq.2021.101617.

Al-Yozbakey, E. A., & Esmaeel, R. I. (2024). The Role of Educational Service Quality in Enhancing Student Satisfaction/an Exploratory Study of the Opinions of a Sample of Students of the Department of Industrial Management. Journal Port Science Research, 7(issue), 523-544. https://doi.org/10.36371/port.2024.special.41.

Amoako, G. K., Ampong, G. O., Gabrah, A. Y. B., de Heer, F., & Antwi-Adjei, A. (2023). Service quality affecting student satisfaction in higher education institutions in Ghana. Cogent Education, 10(2), 2238468. http://dx.doi.org/10.1080/2331186X.2023.2238468.

Annuš, N. (2023). Chatbots in education: The impact of artificial intelligence based ChatGPT on teachers and students. International Journal of Advanced Natural Sciences and Engineering Research, 7(4), 366-370. http://dx.doi.org/10.59287/ijanser.739.

Blikstein, P., & Worsley, M. (2016). Multimodal learning analytics and education data mining: Using computational technologies to measure complex learning tasks. Journal of Learning Analytics, 3(2), 220-238. http://dx.doi.org/10.18608/jla.2016.32.11.

Brau, B. (2020). Constructivism. In R. Kimmons, & S. Caskurlu (Eds.), The Students’ Guide to Learning Design and Research (pp. 33-43).

Bughin, J., Seong, J., Manyika, J., Chui, M., & Joshi, R. (2018, September). Notes from the AI Frontier: Modeling the Impact of AI on the World Economy. McKinsey Global Institute. https://www.mckinsey.com/featured-insights/artificial-intelli-gence/notes-from-the-ai-frontier-modeling-the-impact-of-ai-on-the-world-economy#/.

Chen, K., Chen, T., Ye, P., Chen, H., Chen, K., Han, T., ... & Bai, L. (2024). FNP: Fourier Neural Processes for Arbitrary-Resolution Data Assimilation. arXiv preprint arXiv:2406.01645.

Chu, H.C., Hwang, G.H., Tu, Y.F. and Yang, K.H., 2022. Roles and research trends of artificial intelligence in higher education: A systematic review of the top 50 most-cited articles. Australasian Journal of Educational Technology, 38(3), pp. 22-42. https://doi.org/10.14742/ajet.7526.

Dugenio-Nadela, C., Cañeda, D. M., Tirol, S. L., Samillano, J. H., Pantuan, D. J. M., Piañar, J. C., ... & Decena, E. (2023). Service Quality and Student’s Satisfaction in Higher Education Institution. Journal of Human Resource and Sustainability Studies, 11(04), 858-870. http://dx.doi.org/10.4236/jhrss.2023.114049.

Durairatnam, S., Chong, S. C., Jusoh, M., & Dharmaratne, I. R. (2021). Does people-related total quality management “work” for people? An empirical study of the Sri Lankan apparel industry. The TQM Journal, 33(6), 1183-1200. https://doi.org/10.1108/TQM-06-2020-0140.

Farhan, N. D., Sadiq, B. H., Zwayyer, M. H., & Arnout, B. A. (2024). The impact of using artificial intelligence techniques in improving the quality of educational services/case study at the University of Baghdad. Frontiers in Education, 9. https://doi.org/10.3389/feduc.2024.1474370.

Grájeda, A., Burgos, J., Córdova, P., & Sanjinés, A. (2024). Assessing student-perceived impact of using artificial intelligence tools: Construction of a synthetic index of application in higher education. Cogent Education, 11(1), 2287917. http://dx.doi.org/10.1080/2331186X.2023.2287917.

Gupta, P., & Kaushik, N. (2018). Dimensions of service quality in higher education–critical review (students’ perspective). International journal of educational management, 32(4), 580-605. http://dx.doi.org/10.1108/IJEM-03-2017-0056.

Hariguna, T., & Ruangkanjanases, A. (2024). Assessing the impact of artificial intelligence on customer performance: A quantitative study using partial least squares methodology. Data Science and Management, 7(3), 155-163. https://doi.org/10.1016/j.dsm.2024.01.001.

Htang, L.K. (2021), "A look at university student service quality and satisfaction", Quality Assurance in Education, Vol. 29 No. 2/3, pp. 101-115. https://doi.org/10.1108/QAE-09-2020-0108.

Huang, Z., Mao, Y., & Zhang, J. (2024). The Influence of Artificial Intelligence Technology on College Students' Learning Effectiveness from the Perspective of Constructivism—Taking ChatGPT as an Example. Journal of Education, Humanities and Social Sciences, 30, 40-46. http://dx.doi.org/10.54097/y1x3jj43.

Jackson, E. A. (2024). The Evolution of Artificial Intelligence: A Theoretical Review of its Impact on Teaching and Learning in the Digital Age. Available at https://hdl.handle.net/10419/280893

Jarrahi, M.H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organisational decision making. Business Horizons, 61(4), 577-586.

Kandeepan, V., Vivek, R., & Seevaratnam, T. (2019). Impact of Organizational Citizenship Behaviour on Service Quality in Banking Sector, Vavuniya District. Management, 7, 1-13.

https://doi.org/10.34293/management.v7i2.636.

Keller, J. D., & Potthast, R. (2024). AI-based data assimilation: Learning the functional of analysis estimation. arXiv preprint arXiv:2406.00390.

Vieriu, A. M., & Petrea, G. (2025). The impact of artificial intelligence (AI) on students’ academic development. Education Sciences, 15(3), 343.

Khedrane, S. (2024). The Role of Artificial Intelligence in Distance Education. http://dx.doi.org/10.53284/2120-011-001-006.

Kineber, A. F., Othman, I., Oke, A. E., Chileshe, N., & Zayed, T. (2023). Value management implementation barriers for sustainable building: A bibliometric analysis and partial least square structural equation modeling. Construction Innovation, 23(1), 38-73. http://dx.doi.org/10.1108/CI-05-2021-0103.

Maddy, E. S., & Boukabara, S. A. (2021). MIIDAPS-AI: An explainable machine-learning algorithm for infrared and microwave remote sensing and data assimilation preprocessing-Application to LEO and GEO sensors. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 8566-8576. http://dx.doi.org/10.1109/JSTARS.2021.3104389.

Namjoo, F., Liaghat, E., Shabaziasl, S., Modabernejad, Z., & Morshedi, H. (2023). Students' experience on self-study through AI. AI and Tech in Behavioral and Social Sciences, 1(3), 35-42. http://dx.doi.org/10.61838/kman.aitech.1.3.6.

Necosia, R. I. M. T., & Sealza, I. S. (2024). Service Quality Assessment Tool in a State University in Northern Mindanao. Journal of Interdisciplinary Perspectives, 2(3), 1-1. https://doi.org/10.69569/jip.2024.0036.

Otto, A.S.; Szymanski, D.M.; Varadarajan, R. Customer satisfaction and firm performance: Insights from over a quarter century of empirical research. J. Acad. Mark. Sci. 2020, 48, 543–564. http://dx.doi.org/10.1007/s11747-019-00657-7.

Rahiman, H. U., & Kodikal, R. (2024). Revolutionizing education: Artificial intelligence empowered learning in higher education. Cogent Education, 11(1), 2293431. http://dx.doi.org/10.1080/2331186X.2023.2293431.

Ramseook‐Munhurrun, P., Naidoo, P., & Nundlall, P. (2010). A proposed model for measuring service quality in secondary education. International Journal of Quality and Service Sciences, 2(3), 335-351. http://dx.doi.org/10.1108/17566691011090062.

Rodrigues, C. D., Gonçalves, R. B., Neto, F. L. A., & Camargo, R. Z. (2022). Enhancing Administrative Efficiency in Higher Education with AI: A Chatbot Solution. Review of Artificial Intelligence in Education, 3(00), e023-e023. http://dx.doi.org/10.37497/rev.artif.intell.educ.v3i00.23.

Rodway, P., & Schepman, A. (2023). The impact of adopting AI educational technologies on projected course satisfaction in university students. Computers and Education: Artificial Intelligence, 5, 100150. https://doi.org/10.1016/j.caeai.2023.100150.

Seitova, M., Temirbekova, Z., Kazykhankyzy, L., Khalmatova, Z., & Çelik, H. E. (2024). Perceived service quality and student satisfaction: a case study at Khoja Akhmet Yassawi University, Kazakhstan. Frontiers in Education. https://doi.org/10.3389/feduc.2024.1492432.

Güvendir, M. A., & Özkan, Y. Ö. (2022). Item removal strategies conducted in exploratory factor analysis: A comparative study. International Journal of Assessment Tools in Education, 9(1), 165-180.

Shao, Z. (2019). Interaction effect of strategic leadership behaviors and organizational culture on IS-Business strategic alignment and Enterprise Systems assimilation. International journal of information management, 44, 96-108. https://doi.org/10.1016/j.ijinfomgt.2018.09.010.

Siemens, G. (2012, April). Learning analytics: envisioning a research discipline and a domain of practice. In Proceedings of the 2nd international conference on learning analytics and knowledge (pp. 4-8). http://dx.doi.org/10.1145/2330601.2330605.

Supriyanto, A., Burhanuddin, B., Sunarni, S., Rochmawati, R., Ratri, D. K., & Bhayangkara, A. N. (2024). Academic service quality, student satisfaction and loyalty: a study at higher education legal entities in Indonesia. The TQM Journal. https://www.emerald.com/insight/content/doi/10.1108/TQM-10-2023-0334/full/html.

Syafi'i, M., Yulisetiarini, D., & Sukarno, H. (2024). The influence of service quality, word of mouth, and brand image on loyalty with Ibrahimy Situbondo University student satisfaction mediation. Lisan Al-Hal: Jurnal Pengembangan Pemikiran dan Kebudayaan, 18(1), 113–125. https://doi.org/10.35316/lisanalhal.v18i1.113-125

Sydoruk, T. (2024). How AI Can Reduce Unemployment Rate Among Vulnerable Population of New Immigrants: Assimilation Issues Resolved with AI. Economics & Education, 9(2), 20-25. http://dx.doi.org/10.30525/2500-946X/2024-2-3.

Thin, D. B., & Le Anh Tuan, N. T. L. The Student Satisfaction on Education Service Quality: Case Study at Hong Duc University. http://dx.doi.org/10.47191/jefms/v7-i4-02.

Wahab, M. D. A., & Radmehr, M. (2024). The impact of AI assimilation on firm performance in small and medium-sized enterprises: A moderated multi-mediation model. Heliyon, 10(8). http://dx.doi.org/10.1016/j.heliyon.2024.e29580.

Wamba, S. F. (2022). Impact of artificial intelligence assimilation on firm performance: The mediating effects of organizational agility and customer agility. International Journal of Information Management, 67, 102544. http://dx.doi.org/10.1016/j.ijinfomgt.2022.102544.

Wang, L., & Li, W. (2024). The Impact of AI Usage on University Students’ Willingness for Autonomous Learning. Behavioral Sciences, 14. https://doi.org/10.3390/bs14100956.

Zouhaier, S. (2023). The impact of Artificial intelligence on higher education: An empirical study. European Journal of Educational Sciences, 10(1), 17–33. http://dx.doi.org/10.19044/ejes.v10no1a17.

Larsen, E., Barton, G., Turner, K., & Garvis, S. (2025). Enablers and constraints to teacher educator wellbeing amidst institutional accountability cultures: a PERMA perspective. The Australian Educational Researcher, 52(1), 721-741.

Pinedaa, A. J. M., Mohamadc, A. N., Solomon, O., Bircob, C. N. H., Superioe, M. G., Cuencof, H. O., & Bognot, F. L. (2022). Exploring the standardized root mean square residual (SRMR) of factors influencing e-book usage among CCA students in the Philippines. Indonesian Journal of Contemporary Education, 4(2), 53-70.

Kim, M., Winkler, C., & Talley, S. (2021). Binary item CFA of behavior problem index (BPI) using Mplus: A step-by-step tutorial. The Quantitative Methods for Psychology, 17(2), 141-153.

Pervaiz, H., Ali, K., Razzaq, S., & Tariq, M. (2025). The Impact of Ai on Critical Thinking and Writing Skills in Higher Education. The Critical Review of Social Sciences Studies, 3(1), 3165-3176.

Cheung, G. W., Cooper-Thomas, H. D., Lau, R. S., & Wang, L. C. (2024). Reporting reliability, convergent and discriminant validity with structural equation modeling: A review and best-practice recommendations. Asia Pacific Journal of Management, 41(2), 745-783.

Akoglu, H. E., & Özbek, O. (2021). The effect of brand experiences on brand loyalty through perceived quality and brand trust: a study on sports consumers. Asia Pacific Journal of Marketing and Logistics, 34(10), 2130-2148.

Farahani, M. A., Nargesi, S., Saniee, N., Dolatshahi, Z., Heidari Beni, F., & Shariatpanahi, S. (2024). Factors affecting nurses retention during the COVID‐19 pandemic: a systematic review. Human Resources for Health, 22(1), 78.

Dash, G., & Paul, J. (2021). CB-SEM vs PLS-SEM methods for research in social sciences and technology forecasting. Technological Forecasting and Social Change, 173, 121092.

Duong, N. H., Tran, K. L., Do, B. N., & Duong, T. T. Q. (2024, November). The Relationship between Students’ Perceptions of AI Applications and Intention to Use, Mediating Role of Satisfaction. In The 2nd International Conference: Resiliency by Technology and Design (RTD 2024) (pp. 245-271). Atlantis Press.

Sablić, M., Mirosavljević, A., & Bogatić, K. (2025). Multigrade education and the montessori model: A pathway towards inclusion and equity. International journal of educational research, 131, 102600.

Tao, D., Yang, P., & Feng, H. (2020). Utilization of text mining as a big data analysis tool for food science and nutrition. Comprehensive reviews in food science and food safety, 19(2), 875-894.

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Phineas Sebopelo, Olivia Baloyi, Nnenna Nancy Chukwuma